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Soliton interaction with an external traveling wave
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The dynamics of soliton pulses in the nonlinear Sdimger equation(NLSE) driven by an external trav-
eling wave is studied analytically and numerically. The Hamiltonian structure of the system is used to show
that, in the adiabatic approximation for a single soliton, the problem is integrable despite the large number of
degrees of freedom. Fixed points of the system are found, and their linear stability is investigated. The fixed
points correspond to a Doppler shifted resonance between the external wave and the soliton. The structure and
topological changes of the phase space of the soliton parameters as functions of the strength of coupling are
investigated. A physical derivation of the driven NLSE is given in the context of optical pulse propagation in
asymmetric, twin-core optical fibers. The results can be applied to soliton stabilization and amplification.

PACS numbds): 42.81.Dp, 42.65.Tg, 05.45.Yv

[. INTRODUCTION tonian structure of the equation, thus making possible to em-
ploy Hamiltonian perturbation methods. We will show that,
Investigations of the externally driven nonlinear Schro in the adiabatic approximation for a single soliton, the prob-
dinger (NLS) equation date back to the seminal work of lem is integrable despite the large number of degrees of free-
Kaup and Newell[1] on the ac-driven damped NLS equa- dom. We will show that there exists a resonance, or phase
tion. That work was also one of the pioneering papers irlocking, between the soliton and the driving field. We will
which a perturbation method for solitons based on the insee how this resonance is linked to the particle like proper-
verse scattering transforfiST) technique was developed. ties of solitons and how the resonance conditions are influ-
Externally driven NLS equation arises in many applications,enced by the strength of interaction.
mainly in the context of solid state physics, such as long Transmission of solitons over long distances is essential
Josephson junction®] and charge density wavé¢8]. The for the use of solitons as digital bits in optical transmission
same equation describes plasmas driven by rf figlls lines[13]. This has been achieved by use of Iridium doped
Much attention has been paid to the study of chaotic phefiber amplifiers[14]. Here we will suggest an alternative
nomena in the phase space of the soliton parameters of tt'eheme that employs a twin-core optical fiber. For identical
driven system5—7], and to the formation and stability of fibers with pulses centered around the same central fre-
soliton states unique to the driven systEfB]. Problems of quency, the twin-core system is also termed the nonlinear
generationof solitons via a coupling to external perturba- directional coupler{15], and this system has been exten-
tions have also been investigated. For the NLS equation, theively investigatedsee Ref.[16], and references thergin
generation of solitons in a system somewhat similar to theAsymmetric twin-core optical fibers were also investigated.
one studied in this work was investigated[B10]. For the  Numerical investigation of the asymmetric coupler as a
KdV equation, generation of solitons was studied, both in theneans of performing logical gate operations with solitons
case of a driving by a traveling way&1] and of driving by  was carried out in Refl17]. In Ref.[18], “static” soliton
a broad spectrum noise terrh2]. states which can exist in these fibers with a limited asymme-
In the model system that we shall considsee Eq.(1)  try, were investigated in the model of two coupled NLS
below] the perturbation term does not introduce dissipationequations, where new types of solitons unique to the twin-
(the system remains conservajivand the uniform time- core fiber were found.
dependent driving is generalized to a, spatially dependent, In our model, the two coupled NLS equations, which de-
driving field. The physical background of our model systemscribe the evolution of optical pulses in asymmetric twin-
is the nonlinear pulse propagation in optical fibers. In thiscore fibers, are reduced to a single NLS equation driven by
case the driving force can assume, as will be shown in Se@n external traveling wave. We will see how the driving by
IV, the form of a traveling wave coupled linearly to the NLS an external wave can be used to stabilize soliton propagation
equation. The model system can be realized in the context af optical fibers, suggesting that this scheme can be used in
propagation of envelope optical pulses in twin-core opticaltransmission of solitons over long distances. We will also
fibers. The aim of this work is to study the effects of the show how solitons can be amplified by the external traveling
driving field on the dynamics of the NLS solitons. The em-wave with slowly varying parameters.
phasis is on weak couplings, and the main motivation is sta- The paper is organized as follows. In Sec. Il we outline
bilizing and controlling solitons by an external traveling the Hamiltonian perturbation method for the NLS equation
wave. driven by an external traveling wave. In Sec. Ill we show
We will limit ourselves to one-soliton pulséthat persist that the reduced problem is integrable and investigate a novel
in an unperturbed NLS equatipand investigate the evolu- type of resonancéphase locking between the soliton and
tion of the parameters of the soliton when it is driven by athe external wave. The linear stability analysis of this reso-
traveling wave. This form of coupling preserves the Hamil-nance is performed, and the structure and topological
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changes of the phase plane are investigated, analytically and Going back to the perturbed systea# 0, we will em-
numerically. A physical derivation of the driven NLS equa- ploy the adiabatic approximation and investigate slow varia-
tion and possible applications are presented in Sec. IV. Setions of the soliton parameters caused by the external field.

tion V summarizes our results. In doing so we neglect radiation effects and possible forma-
tion of other solitons. This approach is physically motivated
II. HAMILTONIAN PERTURBATION METHOD FOR THE in the context of interaction of soliton pulses in optical fibers,
DRIVEN NLS EQUATION where a typical initial condition is a single soliton solution of

_ ) the unperturbed NLS equation. It is known that solitons are
Consider the NLS equation coupled to an external travelropyst objects, especially in the case when the perturbations

ing wave field: to the integrable system are Hamilton{@1]. Therefore, for
p P weak couplings, it is reasonable to expect that the main ef-
iﬁ_‘t/’Jr (9_)(‘2/’ +2|y|?y=e exi (kx— wt)], (1)  fect will be that of the solitons persisting, but slowly chang-

ing their parameters.

It is advantageous to preserve the important Hamiltonian
properties of the perturbed problem. Therefore, we will treat
i X . . the perturbed system as a Hamiltonian system in the phase
Eq. (1) & is the(normalized strength of the coupling, and it gpace of the one-soliton parameters driven by the external
is assumed to be smalf:<1. Also, w andk are the(normal-  fie|q. The driving term is obtained directly from the Hamil-

ized frequency and wave number of the driving field, re-qnian(4). indeed, by inserting the unperturbed solutig,
spectively. For specific physical modelsandk are related it time-dependemarameters from Eq2) into the Hamil-

by an appropriate dispersion relation. tonian (4), we obtain
The unperturbedd=0) version of Eq.(1) is completely '

integrable[19], and its most interesting solutions are soli- 1 1
tons. The full one-soliton solution is given by H[ ool =H(p,p, @,q,t) = Z(ppz_ §p3>

Psol(t,X) sin (2k—p)g/p— ot + ¢]
_ (pl2)expli{(pl2)x+[(p*~ p)A]t— = (w/2)}) e coshzk—pymiz] O
coshi (p/2)(x—pt—2q/p)] ’

where we use dimensionless variablese Sec. |V for the
corresponding physical units in the case of optical fipdrs

5 The Hamiltonian(6) describes a dynamical system with
(2) two and a half degrees of freedom, as it is nontrivially

here & and & are free parameters. The quanti coupled to an explicitly time-dependent driving force. As the
w P, P q ¢ P ) quantty dependence of the Hamiltonian upen and t enter only

deflnes' the am_phtuQand_vath (Llp) (_)f the sght(?‘n,p Is the through a linear combination of these variables, a simple
soliton’s velocity, &y/p is the location of its “center of canonical transformatiofsee below will eliminate the ex-

mass,” ande is its initial phase. plicit time dependence, thus yielding an integral of motion:
Equation(1) has Hamiltonian form, as it can be obtained the new Hamiltonian. The new Hamiltonian with two de-
from the variational derivative of a Hamiltonian: grees of freedom may still seem non-integrable, and one is
tempted to look for chaos in this system. We will show,
gy oH 3) however, that because of the existence of an additional inte-
at ! 5? ( gral of motion, the one-soliton problem is actually integrable

and can be fully investigated analytically. Formally, integra-
where the Hamiltonian is given by bility occurs forany e. We expect, however, that the adia-
batic approximatiorithat neglects radiation and possible cre-
2 4 — ation of other solitonswill be valid only for small enouglz.
— [+ 2e Re{yrexdi(kx—w)]} |dX.  Therefore, we will treat the driving term perturbatively and
(4) correspondingly require that<1. On the other hand, one
should assume thgi>1, to make the contribution of the

HereEis the complex conjugate af, and Re and Im are the nonlinear term in the NLS equation significant. This means

Iy
X

Hr- |

real and imaginary parts of a complex number. that p>¢ which will be assumed to hold in the following.
For the unperturbed system=0, the four parameters of

the single-soliton solutio?) form aﬂHamiItonian dynamiPal . PERTURBED ONE-SOLITON PHASE SPACE:

system[20]. For the variablesy=q— (pp/2)t, and ¢=¢ INTEGRABILITY AND RESONANCE

—[(p?—p?)/4]t, the soliton amplitudep becomes the ca-
nonical momentum conjugate to the coordinatavhile the
soliton velocityp is the canonical momentum conjugategto
The (reduced one-soliton Hamiltonian of the unperturbed
system is giveri20] by p(p—2k)=const. (7)

It can be easily checked that the perturbed one-soliton
Hamiltonian(6) has an additional integral of motion

H= E 2 E 3 5) This integral follows from the complete, irreduced system,
4\PP 3P Eq. (1), possessing aexactconservation law:
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I[d]=Im J:(¢g>dx=const., (8)

where ¢ = exg —i(kx—wt)]. Indeed, inserting the one-
soliton ansatZ2) for ¢ in Eq. (8), one immediately obtains
Eq. (7).

Note that the single-soliton solution form, E@) in our
case, of exact integrals of the tyg®), is only an approxi- =
mation, valid as long as generation of radiation and forma-g
tion of other solitons are ignored. Even so, it is a good ap-
proximation[21,16 when studying single soliton evolution
under Hamiltonian perturbations.

We now choose the integral of motidi) as a new mo-
mentum and make the corresponding canonical transforma
tion in the one-soliton parameters’ phase space. Simulta: Angle ©
neously, we exploit the abovementioned symmetry in the o
time dependence of the one-soliton Hamiltonian and intro- FIG- 1. The phase plane of the Hamiltonian systa) for a

duce the new phasé (see below The generating function weak couplingR is the dimensionless action addthe phase. The
of this canonical transformation is parameters are=0.3, P=3.0, k=2.0, andw=2.0 . The reso-

nances corresponding to the four-valued solution of @&) are
- clearly seen. Note that the stability of the resonant points is inter-
S(p,p,P,Q)=—(p—2k)pQ— p( O+ wt— E) .9 changed for positive and negative valuesRof

ion R

k?> w, which is a condition on the dispersion relation of the
external wave alone. Second, k¢ w)2>P?, which is a
R=p, P=p(p—2k), condition on the parameters of the solitand the external
wave.
(p—2k) . The linear stability of the fixed point&l2) and (13) is
O=¢— q-ot+5, Q=dlp. (100 determined by the sign of the produ&G, where G
P =3’Hy/IR?’(R=R,) [H, is obtained from the Hamiltonian
In the new coordinates the Hamiltonian becomes (11) by settinge to 0], andF = &7 cosh Y(7P/2RY).

The phase plane of the systdfl) for a relatively weak
coupling £=0.3) is shown in Fig. 1. The four-valued, R
fixed points are clearly seen. The coordinates of the fixed
points, found numerically, agree very well with the values

N a cos® 11 given by Eqgs(12) and(13).
Scosr( wPI2R?)’ (11) Figure 2 shows the phase plane of the systéi for a
stronger couplings = 0.6. One can see that a topology of the

and the new momentur® is a constant of motion of the phase plane has changed. Four out of the eight fixed points
system. Therefore, the Hamiltoni&hl) represents a system have disappeared. In order to explain this bifurcation, we
with one effective degree of freedom and is therefore inteshould modify the resonance condition, E43) and take
grable. This fact excludes any possibility of chaotic motioninto account higher order correctionsdn
[22] in the reduced, one-soliton system. In the first order ine the resonance condition fd be-

Let us investigate possible resonances between the extefomes:
nal wave and the soliton. In the language of the Hamiltonian

Therefore, the new canonical coordinates are given by

1]1

1
H(R,P.®,Q)=7 R(P+2Rk)2—§R3 —wR

(11), an exact resonance is related to a stdelkptic) fixed . 5 . 47r%P sinkh 7-rP/2R§)

point. Looking for fixed points, we should equatd/JR and R*—4(k°~w)R°+P°+e RycosR(mPI2RE) O

dH/d® both to zero. This yields two conditions. The first is 0 (14)
®o=mn n=01, (120 where the values foR, should be taken from the zeroth

approximation(13). From Eq.(14) we can see that indeed
not all the fixed points which were present whewas small
[see Egs(12) and (13)] still persist when the coupling is
increased. For a giveR, when

an exact condition, valid in all orders ef Writing down the
second condition, we will first limit ourselves to the zero
order approximation with respect ta

Ro=£[2(K?— ) = (4(K*— )2~ P?)¥2J¥2 (13

P RqcosH[ (7/2)(P/R3)]
The nontrivial, multivalued resonance condition for the mo- £ Ax?sint (7/2)(PIR3)]
mentumR arises from the nonstandard dependence of the
Hamiltonian(11) on the momentunik. two of the resonant values & do not exist anymore, thus

From Eq.(13) we obtain two conditions for the existence leading to a topological change in the phase plane, as ob-
of a resonance between the driving field and soliton. Firstserved in Fig. 2.
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the soliton, but this time with the soliton carrier wave’s wave
number. This problem provides us with another nontrivial
example of particlelike properties of solitons.

Let us look at the limiting case di—0, in which the
system should reduce to well known resonance with a homo-
geneous ac drivgl]. For «<0 andp=0 (which are the
parameter values studied in REf]), the constant of motion
P=0 and the resonant values of the soliton’s amplitude are
reduced, see E13), to p=R=*+ 2w, as obtained in Ref.
[1]. For >0, we find from Eq.(13) that sincek?>w must
hold there will be no resonance flr=0. So that in this case
the resonance is unique to a coupling to an external traveling
wave.

Another interesting limiting case is when the values of the

Angle @ wave vectors of the driving field and the internal soliton
wave are close to each other. Thakis k=p/2. This trans-

FIG. 2. The phase plane of the Hamiltonian system (%), for ~ lates[see the transformatio(L0)] to P—0. From Eq.(14)

a stronger couplings =0.6. The parameters are the same as in Fig\We can see that in this limiting case the reduced system will
1, except that=0.6. A bifurcation has occurred. In accordance be exactlyat the bifurcation point, for all values a@f. Note
with Eq. (14), for each of the resonant values Bfthere are no that for k=0, alsov,=0 so that the resonanc&8) is re-
longer two resonant phases, one for a stébliptic) point and one  duced to a simple resonance.

for an unstablghyperbolig point. Only one fixed point is left for

gaclh value ofR. The phase plane topology has changed accord- IV. PHYSICAL MODEL AND APPLICATIONS

ingly.

In this section we will present a physical derivation of Eq.
Now let us discuss the resonance condition in physicall). We will start with the equations for the envelopes of
terms. Transforming back to the “lab” coordinates, using pulses in the cores of two adjoining, closely spacemhiden-

Eq. (10), we can write the resonance conditidr=0 as tical, single-mode fibergtwin-core optical fibers[23,24:
2K)q i Py
dt(% —w=0. (15) I—+W+2|¢l| Y+ Sayexd —i(kx—wt)]=0,
(193
Using the definition oP in Eq. (10), Eq. (15) can be rewrit- p ’ 24
ten as (2 D 2
'( X e +,32W2—+2|¢2| 7
Pq
go—a E)—QFO. (16) 21 . R
?lplexp[i(kx—wt)]:O. (19b

But P is a constant of motion of our reduced system,Pso

—0. Also, R=0 at resonance. Therefore, F@6) reduces to The coordinates andt in Egs.(19) are written in the “soli-

ton units” [25] corresponding to Eq(198. The couplings

) p—2k a1, and ay; result from the overlapping of the evanescent
<P—( )q 0=0. (17)  fields of the transverse fiber modes with the fields in the
adjoining fiber cores. Since the fibers are not identical, the
coupling is not symmetric, i.ex;,# ay,. It is assumed that

. - the transverse fiber mode is not affected by the proximity of
the envelope of the soliton. Therefore, definig p/2 as the the adjoining fiber, and by the identical transverse mode in it.

soliton internal wave numbesee Eq.(2)], andwc=¢ (in  \ye also assume that the interaction term arising from the

the leading order i), the resonance condition becomes - qqg phase modulatiofterm proportional to|ii|2is_ i

(18 =1,2) can be neglectedi=(y,/y,)*? is the ratio of the
nonlinearity strengths in the two fibers, whe¢as]

From EqQ.(18) we can see that the resonance described by
the reduced Hamiltonia(lLl) is a Doppler shifted resonance y, :r‘2_“’fif i=12 (20)
betweentwo waves the external(pumping wave with the ' oA o
wave numbek and frequencyo, and the carrier wave of the
soliton with the wave numbex and frequencyw,. It is  Af" is the effective core are@hich scales like?, p; being
interesting that there are two Doppler shifts in the resonancthe fiber core radiysn; is the Kerr coefficiente is the speed
condition. The first Doppler shift enters the right hand side ofof light, and w; is the carrier frequency in each fiber. The
Eg. (18), and it is by the center-of-mass velocity of the soli- amplitudesy; of the pulses are scaled, following Rg25],
ton. The second Doppler shift, entering the left hand side, i$o (v;/B8)Y?T,, whereg is the dispersion coefficient of the
less intuitive, and is also by the center-of-mass velocity ofpulses in Eq(19a, andT, is the pulse width.

Now, q=Rv¢/2, wherev, in the center-of-mass velocity of

we— KVg= w—Kvy.
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It follows from Eq. (20) that the inequalityd#1 may results obtained in Sec. Ill to the analysis of the dynamics of
result from the fibers having different radii, in which ca$e soliton pulses in twin-core fibers, under the conditions that
is the ratio between the radii of the fiber cores of the twolead to Eq.(22).
fibers. Also, if the fibers are centered around different central One application of our results is soliton phase locking.
frequenciesy; , thend=(w;/w,)"? Let us continue our dis- The resonance conditiorfsee Eqgs.(12) and (13)] corre-
cussion of the different coefficients in E(L9). The coeffi- spond to the soliton’s parameters being phased locked to the
cient 3, is a measure of the difference in the group velocitydriving field. For the stable fixed points this allows fixing of
in Eq. (19b from that in Eq.(194. The coefficient3, is the  the soliton parametefsee also Fig. )1 Specifically, the soli-
ratio of the dispersion coefficients of the two fibegs.#1  ton amplitudep, see Eq(2), is constant. The values of the
may result from the fibers not having the same transversgoliton parameters for which the resonance condition is sat-
wave numbers, or from the pulses in the fibers being cenisfied are given, using Eq10), by Egs.(12) and(13), and by
tered around different central frequencies. The different carthe value of the constant of motion, E), which is deter-
rier frequencies and/or transverse wave numbers also lead mined by the initial conditions of the soliton pulse and by the
the fibers having different phase velocities. This fact resultgarameters of the driving field. Furthermore, the resonance is
in the oscillatory term in the interaction, withandw being ~ Sustained, as can be seen from Fig. 2, also for large values of
the mismatches in the wave number and frequency, respeEQUp“ng[S in Eq. (1)], only that the number of resonances is
tively. This oscillatory term arises in the evaluation of the decreasedisee Eq(14)]. _ - _
overlap integral of the transverse modes of the two fibers. The phase locking can be used in order to stabilize soli-
Notice that, as the coupling in Eq&L9) is asymmetric, it is  tONS. In any real soliton transmission system there exists dis-
not possible in general to cast the system in a Hamiltonia/$iPation due to fiber losses. The dissipation will result in a
form as it was done in Ref24]. We will show below, how- _decrease of t.he solitons’ amplltpde. The dlss[pa'uon can be
ever, that in a certain limit the syste(@9) can be reduced incorporated into the NLS equation by the addit[@6] of a
[see EQ.(22)] to an equation possessing Hamiltonian struc-Perturbation term in the form-il"¢. Although the dissipa-
ture. tive term cannot be directly included in our Hamiltonian per-

We assume that the interaction tefthe right-hand side  turbation approach, we can anticipate, in analogy to the prob-
in Eq. (193 is much larger than the interaction term in Eq. /lem of a driven damped oscillator, that by keeping the
(19h): Sa1,> ap1/ 8. This condition implies thas>1 which ~ Soliton’s parameters in resonance with the driving field we
occurs when the ratio between the radii of the two fibers igVill be able to overcome the effect of the losses in the sys-
large, and when the carrier frequencies are not the saméM. In this case, the elliptic fixed points of Figs. 1 and 2 will
Under these conditions the interaction term in Ekpb) can ~ Pecome attracting points.
be neglected, and E419b) is decoupled from Eq(198 in Another application for which the coupled system can be
the sense that it only enters as a driving term in 8§a,  used is soliton amplification. The amplitufie in Eq. (2)] of
while there is no back action. Now, if we further assume thathe soliton can be increased for pulses which parameters cor-
the pulses described by EG.9b) are in thepositive(norma) respond to periodic orblts_ surroundllng'stable fixed points
dispersion regime then there is no modulational instability(Se€ Figs. 1 and)2The period of oscillations for the stable
[26] in Eq. (19b), and stable linear dispersive waves canOrbits is long and, for small oscillations, is given by°FG,
propagate in the fiber. We are interested in the small ampliwhereF andG were defined following Eq(13). By a proper
tude limit of Eq.(19b), when the pulses are just linear waves. choice of the initial conditions and interaction length the
In this case we can drop the term arising from the KerrSoliton amplitude can be increased by performing a half pe-

nonlinearity. Then the set of equatiofi) can be written as  fiod of nonlinear oscillation around a stable fixed point.
Another mechanism, by which the amplitude of solitons
Oy

) PN can be increased more significantly, is the “dynamic au-

I T gz 2l Yt egoexd —i(kx— w)]=0, toresonance’{9,11,27. The frequency of nonlinear oscilla-

(213  tions depends on their amplitude. Therefore, the infinite
growth of the amplitude, obtained for a linear, dissipation

I s %, free oscillator driven by a resonant external force, is not
N ox "B | Th257 =0 (21D possible for a nonlinear oscillator with constant parameters.

By “chirping” adiabatically the driving field's frequency,
where £ = Sa,,. Therefore the systenil9) reduces to a one can preserve the phase plane structure so that the oscil-
single NLS equation driven by an external traveling wave. lator will continue to perform nonlinear oscillations around

The equation fory,, Eq. (218, can be writtenlomitting  the (time dependentresonant value of the action variabR,
the indice$ as in Eq. (11) in our case. The soliton parameters will remain

) phase locked in resonance with ttebowly varying driving

Oy 9y 2 : B field. SinceR is the soliton amplitude, see EL0), this
'a_x+ ot2 +2[y[*yt+eexdi(Kx=Q1)]=0, (22 mechanism provides a means for substantially increasing the
soliton amplitude in a resonant manner.
where the dispersion relatidn(K) is given by the equation
for 4, in Eq. (21b) together with the phase mismatkhand
w from Eq. (19).

Equation(22) is equivalent to Eq(1) with x andt inter- We have investigated the evolution of single-soliton
changedK = — w, andQ = —k. Therefore we can apply the pulses of the nonlinear Schiimger (NLS) equation driven

V. SUMMARY



PRE 61 SOLITON INTERACTION WITH AN EXTERNAL . .. 879

by an external traveling wave field. This system, even thougheduced system. This bifurcation has been explained analyti-
not integrable, is still Hamiltonian. Using the Hamiltonian cally.

structure and adiabatic approximation for a single soliton, we We gave a physical motivation to this model by showing
reduced the perturbed NLS equation to a two-and-a-half dithat dynamics of soliton pulses in twin-conegnidentica)
mensional Hamiltonian system in the phase space of the paingle-mode optical fibers can be reduced to a system in
rameters of the single soliton solution. One integral of mo-which the dynamics in one core are governed by a NLS
tion in this system results from the fact that the timeequation driven by a linear traveling wave propagating in the
dependence drops out in a rotating reference frame. An addjoining core. In this regime, one can neglect the back ac-
ditional integral of motion is a consequence of an exact intion of the nonlinear wave on the linear wave. Finally, we
tegral of motion in the complete, unreduced partial differen-discussed possible applications of our results to stabilization
tial equation. Therefore, the reduced system becomeand amplification of soliton pulses in the asymmetric, twin-
effectively one-dimensional and therefore integrable. Physieore optical fiber.

cally, the reduced system represents a nonlinear oscillator

(with an unusuql form of the Hamlltonlan:oup_led to an ACKNOWLEDGMENT

external harmonic force. The phase plane of this system was

investigated analytically and numerically, and a good agree- We are extremely grateful to B. Meerson for a continuous
ment between these two was found. As the coupling strengtimterest and advice, and for a critical reading of the manu-
increases, there occurs a bifurcation in the phase plane of treeript.
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