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Soliton interaction with an external traveling wave

Gil Cohen
Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem 91904, Israel

~Received 29 March 1999!

The dynamics of soliton pulses in the nonlinear Schro¨dinger equation~NLSE! driven by an external trav-
eling wave is studied analytically and numerically. The Hamiltonian structure of the system is used to show
that, in the adiabatic approximation for a single soliton, the problem is integrable despite the large number of
degrees of freedom. Fixed points of the system are found, and their linear stability is investigated. The fixed
points correspond to a Doppler shifted resonance between the external wave and the soliton. The structure and
topological changes of the phase space of the soliton parameters as functions of the strength of coupling are
investigated. A physical derivation of the driven NLSE is given in the context of optical pulse propagation in
asymmetric, twin-core optical fibers. The results can be applied to soliton stabilization and amplification.

PACS number~s!: 42.81.Dp, 42.65.Tg, 05.45.Yv
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I. INTRODUCTION

Investigations of the externally driven nonlinear Sch¨-
dinger ~NLS! equation date back to the seminal work
Kaup and Newell@1# on the ac-driven damped NLS equ
tion. That work was also one of the pioneering papers
which a perturbation method for solitons based on the
verse scattering transform~IST! technique was developed
Externally driven NLS equation arises in many applicatio
mainly in the context of solid state physics, such as lo
Josephson junctions@2# and charge density waves@3#. The
same equation describes plasmas driven by rf fields@4#.
Much attention has been paid to the study of chaotic p
nomena in the phase space of the soliton parameters o
driven system@5–7#, and to the formation and stability o
soliton states unique to the driven system@7,8#. Problems of
generationof solitons via a coupling to external perturb
tions have also been investigated. For the NLS equation,
generation of solitons in a system somewhat similar to
one studied in this work was investigated in@9,10#. For the
KdV equation, generation of solitons was studied, both in
case of a driving by a traveling wave@11# and of driving by
a broad spectrum noise term@12#.

In the model system that we shall consider@see Eq.~1!
below# the perturbation term does not introduce dissipat
~the system remains conservative!, and the uniform time-
dependent driving is generalized to a, spatially depend
driving field. The physical background of our model syste
is the nonlinear pulse propagation in optical fibers. In t
case the driving force can assume, as will be shown in S
IV, the form of a traveling wave coupled linearly to the NL
equation. The model system can be realized in the contex
propagation of envelope optical pulses in twin-core opti
fibers. The aim of this work is to study the effects of t
driving field on the dynamics of the NLS solitons. The em
phasis is on weak couplings, and the main motivation is
bilizing and controlling solitons by an external travelin
wave.

We will limit ourselves to one-soliton pulses~that persist
in an unperturbed NLS equation! and investigate the evolu
tion of the parameters of the soliton when it is driven by
traveling wave. This form of coupling preserves the Ham
PRE 611063-651X/2000/61~1!/874~6!/$15.00
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tonian structure of the equation, thus making possible to e
ploy Hamiltonian perturbation methods. We will show tha
in the adiabatic approximation for a single soliton, the pro
lem is integrable despite the large number of degrees of f
dom. We will show that there exists a resonance, or ph
locking, between the soliton and the driving field. We w
see how this resonance is linked to the particle like prop
ties of solitons and how the resonance conditions are in
enced by the strength of interaction.

Transmission of solitons over long distances is essen
for the use of solitons as digital bits in optical transmissi
lines @13#. This has been achieved by use of Iridium dop
fiber amplifiers @14#. Here we will suggest an alternativ
scheme that employs a twin-core optical fiber. For identi
fibers with pulses centered around the same central
quency, the twin-core system is also termed the nonlin
directional coupler@15#, and this system has been exte
sively investigated~see Ref.@16#, and references therein!.
Asymmetric twin-core optical fibers were also investigate
Numerical investigation of the asymmetric coupler as
means of performing logical gate operations with solito
was carried out in Ref.@17#. In Ref. @18#, ‘‘static’’ soliton
states which can exist in these fibers with a limited asymm
try, were investigated in the model of two coupled NL
equations, where new types of solitons unique to the tw
core fiber were found.

In our model, the two coupled NLS equations, which d
scribe the evolution of optical pulses in asymmetric tw
core fibers, are reduced to a single NLS equation driven
an external traveling wave. We will see how the driving
an external wave can be used to stabilize soliton propaga
in optical fibers, suggesting that this scheme can be use
transmission of solitons over long distances. We will a
show how solitons can be amplified by the external travel
wave with slowly varying parameters.

The paper is organized as follows. In Sec. II we outli
the Hamiltonian perturbation method for the NLS equati
driven by an external traveling wave. In Sec. III we sho
that the reduced problem is integrable and investigate a n
type of resonance~phase locking! between the soliton and
the external wave. The linear stability analysis of this re
nance is performed, and the structure and topolog
874 ©2000 The American Physical Society
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PRE 61 875SOLITON INTERACTION WITH AN EXTERNAL . . .
changes of the phase plane are investigated, analytically
numerically. A physical derivation of the driven NLS equ
tion and possible applications are presented in Sec. IV. S
tion V summarizes our results.

II. HAMILTONIAN PERTURBATION METHOD FOR THE
DRIVEN NLS EQUATION

Consider the NLS equation coupled to an external trav
ing wave field:

i
]c

]t
1

]2c

]x2 12ucu2c5« exp@ i ~kx2vt !#, ~1!

where we use dimensionless variables~see Sec. IV for the
corresponding physical units in the case of optical fibers!. In
Eq. ~1! « is the~normalized! strength of the coupling, and i
is assumed to be small:«!1. Also,v andk are the~normal-
ized! frequency and wave number of the driving field, r
spectively. For specific physical modelsv andk are related
by an appropriate dispersion relation.

The unperturbed («50) version of Eq.~1! is completely
integrable@19#, and its most interesting solutions are so
tons. The full one-soliton solution is given by

csol~ t,x!

5
~r/2!exp„i $~p/2!x1@~r22p2!/4#t2ŵ2~p/2!%…

cosh@~r/2!~x2pt22q̂/r!#
,

~2!

wherer, p, q̂ and ŵ are free parameters. The quantityr
defines the amplitudeandwidth (1/r) of the soliton,p is the
soliton’s velocity, 2q̂/r is the location of its ‘‘center of
mass,’’ andŵ is its initial phase.

Equation~1! has Hamiltonian form, as it can be obtaine
from the variational derivative of a Hamiltonian:

]c

]t
52 i

dH

dc̄
, ~3!

where the Hamiltonian is given by

H@c#5E
2`

` S U]c

]xU
2

2ucu412« Re$c̄exp@ i ~kx2vt !#% Ddx.

~4!

Herec̄ is the complex conjugate ofc, and Re and Im are the
real and imaginary parts of a complex number.

For the unperturbed system,«50, the four parameters o
the single-soliton solution~2! form a Hamiltonian dynamica
system @20#. For the variablesq5q̂2(rp/2)t, and w5ŵ
2@(r22p2)/4#t, the soliton amplituder becomes the ca
nonical momentum conjugate to the coordinatew while the
soliton velocityp is the canonical momentum conjugate toq.
The ~reduced! one-soliton Hamiltonian of the unperturbe
system is given@20# by

H5
1

4 S rp22
1

3
r3D . ~5!
nd

c-

l-

Going back to the perturbed system,«Þ0, we will em-
ploy the adiabatic approximation and investigate slow va
tions of the soliton parameters caused by the external fi
In doing so we neglect radiation effects and possible form
tion of other solitons. This approach is physically motivat
in the context of interaction of soliton pulses in optical fibe
where a typical initial condition is a single soliton solution
the unperturbed NLS equation. It is known that solitons
robust objects, especially in the case when the perturbat
to the integrable system are Hamiltonian@21#. Therefore, for
weak couplings, it is reasonable to expect that the main
fect will be that of the solitons persisting, but slowly chan
ing their parameters.

It is advantageous to preserve the important Hamilton
properties of the perturbed problem. Therefore, we will tr
the perturbed system as a Hamiltonian system in the ph
space of the one-soliton parameters driven by the exte
field. The driving term is obtained directly from the Hami
tonian~4!. Indeed, by inserting the unperturbed solutioncsol
with time-dependentparameters from Eq.~2! into the Hamil-
tonian ~4!, we obtain

H@csol#5H~r,p,w,q,t !5
1

4 S rp22
1

3
r3D

1«
p sin@~2k2p!q/r2vt1w#

cosh@~2k2p!p/2r#
. ~6!

The Hamiltonian~6! describes a dynamical system wi
two and a half degrees of freedom, as it is nontrivia
coupled to an explicitly time-dependent driving force. As t
dependence of the Hamiltonian uponw and t enter only
through a linear combination of these variables, a sim
canonical transformation~see below! will eliminate the ex-
plicit time dependence, thus yielding an integral of motio
the new Hamiltonian. The new Hamiltonian with two d
grees of freedom may still seem non-integrable, and on
tempted to look for chaos in this system. We will sho
however, that because of the existence of an additional i
gral of motion, the one-soliton problem is actually integrab
and can be fully investigated analytically. Formally, integr
bility occurs for any «. We expect, however, that the adia
batic approximation~that neglects radiation and possible cr
ation of other solitons! will be valid only for small enough«.
Therefore, we will treat the driving term perturbatively an
correspondingly require that«!1. On the other hand, on
should assume thatr.1, to make the contribution of the
nonlinear term in the NLS equation significant. This mea
that r@« which will be assumed to hold in the following.

III. PERTURBED ONE-SOLITON PHASE SPACE:
INTEGRABILITY AND RESONANCE

It can be easily checked that the perturbed one-sol
Hamiltonian~6! has an additional integral of motion

r~p22k!5const. ~7!

This integral follows from the complete, irreduced syste
Eq. ~1!, possessing anexactconservation law:
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I @f#5Im E
2`

` S f
]f̄

]x
D dx5const., ~8!

where f5c exp@2i(kx2vt)#. Indeed, inserting the one
soliton ansatz~2! for c in Eq. ~8!, one immediately obtains
Eq. ~7!.

Note that the single-soliton solution form, Eq.~7! in our
case, of exact integrals of the type~8!, is only an approxi-
mation, valid as long as generation of radiation and form
tion of other solitons are ignored. Even so, it is a good
proximation @21,16# when studying single soliton evolutio
under Hamiltonian perturbations.

We now choose the integral of motion~7! as a new mo-
mentum and make the corresponding canonical transfor
tion in the one-soliton parameters’ phase space. Simu
neously, we exploit the abovementioned symmetry in
time dependence of the one-soliton Hamiltonian and in
duce the new phaseF ~see below!. The generating function
of this canonical transformation is

S~r,p,F,Q!52~p22k!rQ2rS F1vt2
p

2 D . ~9!

Therefore, the new canonical coordinates are given by

R5r, P5r~p22k!,

F5w2
~p22k!

r
q2vt1

p

2
, Q5q/r. ~10!

In the new coordinates the Hamiltonian becomes

H~R,P,F,Q!5
1

4 F 1

R
~P12Rk!22

1

3
R3G2vR

1«
p cosF

cosh~pP/2R2!
, ~11!

and the new momentumP is a constant of motion of the
system. Therefore, the Hamiltonian~11! represents a system
with one effective degree of freedom and is therefore in
grable. This fact excludes any possibility of chaotic moti
@22# in the reduced, one-soliton system.

Let us investigate possible resonances between the e
nal wave and the soliton. In the language of the Hamilton
~11!, an exact resonance is related to a stable~elliptic! fixed
point. Looking for fixed points, we should equate]H/]R and
]H/]F both to zero. This yields two conditions. The first

F05pn n50,1, ~12!

an exact condition, valid in all orders of«. Writing down the
second condition, we will first limit ourselves to the ze
order approximation with respect to«:

R056@2~k22v!6~4~k22v!22P2!1/2#1/2. ~13!

The nontrivial, multivalued resonance condition for the m
mentumR arises from the nonstandard dependence of
Hamiltonian~11! on the momentumR.

From Eq.~13! we obtain two conditions for the existenc
of a resonance between the driving field and soliton. Fi
-
-

a-
a-
e
-

-

er-
n

-
e

t,

k2.v, which is a condition on the dispersion relation of th
external wave alone. Second, 4(k22v)2.P2, which is a
condition on the parameters of the solitonand the external
wave.

The linear stability of the fixed points~12! and ~13! is
determined by the sign of the productFG, where G
5]2H0 /]R2(R5R0) @H0 is obtained from the Hamiltonian
~11! by setting« to 0#, andF5«p cosh21(pP/2R0

2).
The phase plane of the system~11! for a relatively weak

coupling («50.3) is shown in Fig. 1. The four-valued, inR,
fixed points are clearly seen. The coordinates of the fix
points, found numerically, agree very well with the valu
given by Eqs.~12! and ~13!.

Figure 2 shows the phase plane of the system~11! for a
stronger coupling,«50.6. One can see that a topology of th
phase plane has changed. Four out of the eight fixed po
have disappeared. In order to explain this bifurcation,
should modify the resonance condition, Eq.~13! and take
into account higher order corrections in«.

In the first order in« the resonance condition forR be-
comes:

R424~k22v!R21P27«
4p2P sinh~pP/2R0

2!

R0cosh2~pP/2R0
2!

50 ,

~14!

where the values forR0 should be taken from the zerot
approximation~13!. From Eq.~14! we can see that indee
not all the fixed points which were present when« was small
@see Eqs.~12! and ~13!# still persist when the coupling is
increased. For a givenP, when

«.
PR0cosh2@~p/2!~P/R0

2!#

4p2sinh@~p/2!~P/R0
2!#

,

two of the resonant values ofR do not exist anymore, thus
leading to a topological change in the phase plane, as
served in Fig. 2.

FIG. 1. The phase plane of the Hamiltonian system~11! for a
weak coupling.R is the dimensionless action andF the phase. The
parameters are«50.3, P53.0, k52.0, andv52.0 . The reso-
nances corresponding to the four-valued solution of Eq.~13! are
clearly seen. Note that the stability of the resonant points is in
changed for positive and negative values ofR.
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PRE 61 877SOLITON INTERACTION WITH AN EXTERNAL . . .
Now let us discuss the resonance condition in phys
terms. Transforming back to the ‘‘lab’’ coordinates, usi

Eq. ~10!, we can write the resonance conditionḞ50 as

ẇ2
d

dt S ~p22k!q

R D2v50. ~15!

Using the definition ofP in Eq. ~10!, Eq. ~15! can be rewrit-
ten as

ẇ2
d

dt S Pq

R2 D2v50. ~16!

But P is a constant of motion of our reduced system, soṖ

50. Also, Ṙ50 at resonance. Therefore, Eq.~16! reduces to

ẇ2S p22k

R D q̇2v50. ~17!

Now, q̇5Rvs/2, wherevs in the center-of-mass velocity o
the envelope of the soliton. Therefore, definingk[p/2 as the
soliton internal wave number@see Eq.~2!#, and vc[ẇ ~in
the leading order in«), the resonance condition becomes

vc2kvs5v2kvs . ~18!

From Eq.~18! we can see that the resonance described
the reduced Hamiltonian~11! is a Doppler shifted resonanc
betweentwo waves: the external~pumping! wave with the
wave numberk and frequencyv, and the carrier wave of the
soliton with the wave numberk and frequencyvc . It is
interesting that there are two Doppler shifts in the resona
condition. The first Doppler shift enters the right hand side
Eq. ~18!, and it is by the center-of-mass velocity of the so
ton. The second Doppler shift, entering the left hand side
less intuitive, and is also by the center-of-mass velocity

FIG. 2. The phase plane of the Hamiltonian system, Eq.~11!, for
a stronger coupling,«50.6. The parameters are the same as in F
1, except that«50.6. A bifurcation has occurred. In accordan
with Eq. ~14!, for each of the resonant values ofR there are no
longer two resonant phases, one for a stable~elliptic! point and one
for an unstable~hyperbolic! point. Only one fixed point is left for
each value ofR. The phase plane topology has changed acco
ingly.
l

y

e
f

is
f

the soliton, but this time with the soliton carrier wave’s wa
number. This problem provides us with another nontriv
example of particlelike properties of solitons.

Let us look at the limiting case ofk→0, in which the
system should reduce to well known resonance with a ho
geneous ac drive@1#. For v,0 and p50 ~which are the
parameter values studied in Ref.@1#!, the constant of motion
P50 and the resonant values of the soliton’s amplitude
reduced, see Eq.~13!, to r5R56A2v, as obtained in Ref.
@1#. For v.0, we find from Eq.~13! that sincek2.v must
hold there will be no resonance fork50. So that in this case
the resonance is unique to a coupling to an external trave
wave.

Another interesting limiting case is when the values of t
wave vectors of the driving field and the internal solito
wave are close to each other. That isk.k5p/2. This trans-
lates @see the transformation~10!# to P→0. From Eq.~14!
we can see that in this limiting case the reduced system
be exactlyat the bifurcation point, for all values of«. Note
that for k50, alsovs50 so that the resonance~18! is re-
duced to a simple resonance.

IV. PHYSICAL MODEL AND APPLICATIONS

In this section we will present a physical derivation of E
~1!. We will start with the equations for the envelopes
pulses in the cores of two adjoining, closely spaced,noniden-
tical, single-mode fibers~twin-core optical fibers! @23,24#:

i
]c1

]x
1

]2c1

]t2 12uc1u2c11da12c2exp@2 i ~ k̂x2v̂t !#50,

~19a!

i S ]c2

]x
2b1

]c2

]t D1b2

]2c2

]t2 12uc2u2c2

1
a21

d
c1exp@ i ~ k̂x2v̂t !#50. ~19b!

The coordinatesx andt in Eqs.~19! are written in the ‘‘soli-
ton units’’ @25# corresponding to Eq.~19a!. The couplings
a12 and a21 result from the overlapping of the evanesce
fields of the transverse fiber modes with the fields in
adjoining fiber cores. Since the fibers are not identical,
coupling is not symmetric, i.e.a12Þa21. It is assumed that
the transverse fiber mode is not affected by the proximity
the adjoining fiber, and by the identical transverse mode in
We also assume that the interaction term arising from
cross phase modulation~term proportional touc i u2c32 i ,i
51,2) can be neglected.d5(g1 /g2)1/2 is the ratio of the
nonlinearity strengths in the two fibers, where@26#

g i5
n2v i

cAi
eff i 51,2, ~20!

Ai
eff is the effective core area~which scales liker i

2 , r i being
the fiber core radius!, n2 is the Kerr coefficient,c is the speed
of light, and v i is the carrier frequency in each fiber. Th
amplitudesc i of the pulses are scaled, following Ref.@25#,
to (g i /b)1/2T0, whereb is the dispersion coefficient of th
pulses in Eq.~19a!, andT0 is the pulse width.

.
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878 PRE 61GIL COHEN
It follows from Eq. ~20! that the inequalitydÞ1 may
result from the fibers having different radii, in which cased
is the ratio between the radii of the fiber cores of the t
fibers. Also, if the fibers are centered around different cen
frequenciesv i , thend5(v1 /v2)1/2. Let us continue our dis-
cussion of the different coefficients in Eq.~19!. The coeffi-
cient b1 is a measure of the difference in the group veloc
in Eq. ~19b! from that in Eq.~19a!. The coefficientb2 is the
ratio of the dispersion coefficients of the two fibers.b2Þ1
may result from the fibers not having the same transve
wave numbers, or from the pulses in the fibers being c
tered around different central frequencies. The different c
rier frequencies and/or transverse wave numbers also lea
the fibers having different phase velocities. This fact res
in the oscillatory term in the interaction, withk̂ andv̂ being
the mismatches in the wave number and frequency, res
tively. This oscillatory term arises in the evaluation of t
overlap integral of the transverse modes of the two fibe
Notice that, as the coupling in Eqs.~19! is asymmetric, it is
not possible in general to cast the system in a Hamilton
form as it was done in Ref.@24#. We will show below, how-
ever, that in a certain limit the system~19! can be reduced
@see Eq.~22!# to an equation possessing Hamiltonian stru
ture.

We assume that the interaction term~the right-hand side!
in Eq. ~19a! is much larger than the interaction term in E
~19b!: da12@a21/d. This condition implies thatd@1 which
occurs when the ratio between the radii of the two fibers
large, and when the carrier frequencies are not the sa
Under these conditions the interaction term in Eq.~19b! can
be neglected, and Eq.~19b! is decoupled from Eq.~19a! in
the sense that it only enters as a driving term in Eq.~19a!,
while there is no back action. Now, if we further assume t
the pulses described by Eq.~19b! are in thepositive~normal!
dispersion regime then there is no modulational instabi
@26# in Eq. ~19b!, and stable linear dispersive waves c
propagate in the fiber. We are interested in the small am
tude limit of Eq.~19b!, when the pulses are just linear wave
In this case we can drop the term arising from the K
nonlinearity. Then the set of equations~19! can be written as

i
]c1

]x
1

]2c1

]t2 12uc1u2c11«c2exp@2 i ~ k̂x2v̂t !#50,

~21a!

i S ]c2

]x
2b1

]c2

]t D1b2

]2c2

]t2 50, ~21b!

where «5da12. Therefore the system~19! reduces to a
single NLS equation driven by an external traveling wave

The equation forc1, Eq. ~21a!, can be written~omitting
the indices! as

i
]c

]x
1

]2c

]t2 12ucu2c1«exp@ i ~Kx2Vt !#50, ~22!

where the dispersion relationV(K) is given by the equation
for c2 in Eq. ~21b! together with the phase mismatchk̂ and
v̂ from Eq. ~19!.

Equation~22! is equivalent to Eq.~1! with x and t inter-
changed,K52v, andV52k. Therefore we can apply th
al

e
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s
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t
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results obtained in Sec. III to the analysis of the dynamics
soliton pulses in twin-core fibers, under the conditions t
lead to Eq.~22!.

One application of our results is soliton phase lockin
The resonance conditions@see Eqs.~12! and ~13!# corre-
spond to the soliton’s parameters being phased locked to
driving field. For the stable fixed points this allows fixing o
the soliton parameters~see also Fig. 1!. Specifically, the soli-
ton amplituder, see Eq.~2!, is constant. The values of th
soliton parameters for which the resonance condition is
isfied are given, using Eq.~10!, by Eqs.~12! and~13!, and by
the value of the constant of motion, Eq.~7!, which is deter-
mined by the initial conditions of the soliton pulse and by t
parameters of the driving field. Furthermore, the resonanc
sustained, as can be seen from Fig. 2, also for large value
coupling@« in Eq. ~1!#, only that the number of resonances
decreased@see Eq.~14!#.

The phase locking can be used in order to stabilize s
tons. In any real soliton transmission system there exists
sipation due to fiber losses. The dissipation will result in
decrease of the solitons’ amplitude. The dissipation can
incorporated into the NLS equation by the addition@26# of a
perturbation term in the form2 iGc. Although the dissipa-
tive term cannot be directly included in our Hamiltonian pe
turbation approach, we can anticipate, in analogy to the pr
lem of a driven damped oscillator, that by keeping t
soliton’s parameters in resonance with the driving field
will be able to overcome the effect of the losses in the s
tem. In this case, the elliptic fixed points of Figs. 1 and 2 w
become attracting points.

Another application for which the coupled system can
used is soliton amplification. The amplitude@r in Eq. ~2!# of
the soliton can be increased for pulses which parameters
respond to periodic orbits surrounding stable fixed poi
~see Figs. 1 and 2!. The period of oscillations for the stabl
orbits is long and, for small oscillations, is given by«1/2FG,
whereF andG were defined following Eq.~13!. By a proper
choice of the initial conditions and interaction length t
soliton amplitude can be increased by performing a half
riod of nonlinear oscillation around a stable fixed point.

Another mechanism, by which the amplitude of solito
can be increased more significantly, is the ‘‘dynamic a
toresonance’’@9,11,27#. The frequency of nonlinear oscilla
tions depends on their amplitude. Therefore, the infin
growth of the amplitude, obtained for a linear, dissipati
free oscillator driven by a resonant external force, is n
possible for a nonlinear oscillator with constant paramete
By ‘‘chirping’’ adiabatically the driving field’s frequency,
one can preserve the phase plane structure so that the o
lator will continue to perform nonlinear oscillations aroun
the ~time dependent! resonant value of the action variable,R
in Eq. ~11! in our case. The soliton parameters will rema
phase locked in resonance with the~slowly varying! driving
field. SinceR is the soliton amplitude, see Eq.~10!, this
mechanism provides a means for substantially increasing
soliton amplitude in a resonant manner.

V. SUMMARY

We have investigated the evolution of single-solit
pulses of the nonlinear Schro¨dinger ~NLS! equation driven
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by an external traveling wave field. This system, even tho
not integrable, is still Hamiltonian. Using the Hamiltonia
structure and adiabatic approximation for a single soliton,
reduced the perturbed NLS equation to a two-and-a-half
mensional Hamiltonian system in the phase space of the
rameters of the single soliton solution. One integral of m
tion in this system results from the fact that the tim
dependence drops out in a rotating reference frame. An
ditional integral of motion is a consequence of an exact
tegral of motion in the complete, unreduced partial differe
tial equation. Therefore, the reduced system beco
effectively one-dimensional and therefore integrable. Ph
cally, the reduced system represents a nonlinear oscill
~with an unusual form of the Hamiltonian! coupled to an
external harmonic force. The phase plane of this system
investigated analytically and numerically, and a good agr
ment between these two was found. As the coupling stren
increases, there occurs a bifurcation in the phase plane o
d,

sh

y
n
,
a,
h

e
i-
a-
-

d-
-
-
es
i-
or

as
e-
th
he

reduced system. This bifurcation has been explained ana
cally.

We gave a physical motivation to this model by showi
that dynamics of soliton pulses in twin-core,nonidentical,
single-mode optical fibers can be reduced to a system
which the dynamics in one core are governed by a N
equation driven by a linear traveling wave propagating in
adjoining core. In this regime, one can neglect the back
tion of the nonlinear wave on the linear wave. Finally, w
discussed possible applications of our results to stabiliza
and amplification of soliton pulses in the asymmetric, tw
core optical fiber.
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